Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295437

RESUMO

RV6Sn6 (R = Sc, Y, or rare earth) is a new family of kagome metals that have a similar vanadium structural motif as AV3Sb5 (A = K, Rb, Cs) compounds. Unlike AV3Sb5, ScV6Sn6 is the only compound among the series of RV6Sn6 that displays a charge density wave (CDW) order at ambient pressure, yet it shows no superconductivity (SC) at low temperatures. Here, we perform a high-pressure transport study on the ScV6Sn6 single crystal to track the evolutions of the CDW transition and to explore possible SC. In contrast to AV3Sb5 compounds, the CDW order of ScV6Sn6 can be suppressed completely by a pressure of about 2.4 GPa, but no SC is detected down to 40 mK at 2.35 GPa and 1.5 K up to 11 GPa. Moreover, we observed that the resistivity anomaly around the CDW transition undergoes an obvious change at ~2.04 GPa before it vanishes completely. The present work highlights a distinct relationship between CDW and SC in ScV6Sn6 in comparison with the well-studied AV3Sb5.

2.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630864

RESUMO

A novel and interesting method for the preparation of carboxymethylcellulose-polyaniline film-supported copper catalyst (CuII/I@CMC-PANI) has been developed via spray-assisted interfacial polymerization. Using copper sulfate as an initiator, spraying technology was introduced to form a unique interface that is perfectly beneficial to the polymerization of aniline monomers onto carboxymethylcellulose macromolecule chains. To further confirm the composition and structure of the as-prepared hybrid film, it was systematically characterized by inductively coupled plasma (ICP), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA) techniques. The Cu content in the fresh CuII/I@CMC-PANI film was determined to be 1.805 mmol/g, and spherical nanoparticles with an average size of ca. 10.04 nm could be observed in the hybrid film. The CuII/I@CMC-PANI hybrid film was exerted as a dip catalyst to catalyze the aldehyde-alkyne-amine (A3) coupling reactions. High yields of the products (up to 97%) were obtained in this catalytic system, and the catalyst could be easily picked up from the reaction mixture by tweezers and reused for at least six consecutive runs, without any discernible losses in its activity in the model reaction. The dip catalyst of CuII/I@CMC-PANI, with easy fabrication, convenient deployment, superior catalytic activity, and great reusability, is expected to be very useful in organic synthesis.

3.
J Ultrasound Med ; 33(11): 1957-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25336483

RESUMO

OBJECTIVES: A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. METHODS: A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. RESULTS: It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P < .05). In addition, the intensity decrease in the ROI was significantly correlated with the destruction area (P < .05). CONCLUSIONS: By the proposed strategy, microbubbles could be destroyed in a variably sized region, and destruction efficiency as well as the corresponding inertial cavitation dose could be regulated by manipulating the transmission parameters.


Assuntos
Gases/química , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Fosfolipídeos/química , Fosfolipídeos/efeitos da radiação , Hexafluoreto de Enxofre/química , Hexafluoreto de Enxofre/efeitos da radiação , Ultrassonografia de Intervenção/instrumentação , Meios de Contraste/química , Meios de Contraste/efeitos da radiação , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/efeitos da radiação , Ondas de Choque de Alta Energia , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas
4.
Ultrasonics ; 54(1): 147-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23673346

RESUMO

This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.


Assuntos
Algoritmos , Meios de Contraste/uso terapêutico , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Ultrassonografia/métodos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...